organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

M. Idiris Saleh,^a Eny Kusrini,^a Nurziana Ngah^b and Bohari M. Yamin^b*

^aSchool of Chemical Sciences, Universiti Sains Malaysia, Minden 11800, Penang, Malaysia, and ^bSchool of Chemical Sciences and Food Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia

Correspondence e-mail: bohari@pkrisc.cc.ukm.my

Key indicators

Single-crystal X-ray study T = 273 K Mean σ (C–C) = 0.011 Å R factor = 0.053 wR factor = 0.133 Data-to-parameter ratio = 16.2

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e. Bis(2,3-dibromo-6,7,9,10,12,13,15,16octahydro-5,8,11,14,17-pentaoxabenzocyclopentadecene) hydroxonium tribromide

In the title compound, $2C_{14}H_{18}O_5Br_2 \cdot OH_3^+ \cdot Br_3^-$, the two 15crown-5 macrocylic rings are linked by an oxonium cation *via* $O-H \cdot \cdot \cdot O$ hydrogen bonds, forming a positively charged unsymmetrical sandwich-like compound with a tribromide counter-anion. The conformations of the two crown-5 fragments have *gauche* C-C and *anti* C-O linkages.

Comment

The reaction of benzo-15-crown-5 with some lanthanide metals normally leads to the formation of a complex *via* metal-oxygen chelation, *e.g.* trichloro(15-crown-5)neody-mium (Rogers *et al.*, 1991) and salt-type compounds such as $[M(H_2O)_2(15\text{-crown-5})](NO_3)_2$ (Hao *et al.*, 2005). However, a variety of different products without metal coordination by the crown ether have also been observed, for example (15-crown-5)triaquadichlorodioxouranium (Hassaballa *et al.*, 1998). Similarly, in our study, no complexation product was obtained from a solution mixture containing benzo-15-crown-5, hydrogen bromide and europium nitrate but, instead, bromination of the benzene ring and the formation of a tribromide anion occurred, resulting in the title compound, (I).

In contrast to 4-nitrobenzo-15-crown-5 tetrachloroaurate(III) oxonium monohydrate clathrate (Calleja *et al.*, 2001), compound (I) has two dibromobenzo-15-crown-5 molecules linked by hydrogen bonds between the annular O atoms, O1', O2, O4', O7 and O8 and the H atoms of the oxonium cation (Fig. 1, Table 2). As in the unsubstituted benzo-15-crown-5 (Hanson, 1978), the crown ether molecules maintain their approximate plane of symmetry through O3 and the mid-point of the C9–C14 bond for the first macrocycle and through O8 and the mid-point of the C23–C28 bond for the second ring. The torsion angles (Table 1) also indicate a similar conformation, individual O–C–C–O segments being ag^-a , g^-g^-a , ag^+g^+ and ag^+a in the two crown ether units. The bond lengths and angles are also close to those in benzo-15-crown-5 [average C–C, 1.485; C–O, 1.360 (5)–

© 2006 International Union of Crystallography All rights reserved Received 16 March 2006 Accepted 26 March 2006

Structure of the title compound, (I), with 30% probability displacement ellipsoids. H atoms of the 15-crown-5 have been omitted for clarity. Dashed lines indicate hydrogen bonds.

1.431 (5) Å], indicating that the hydrogen bonds that link the two molecules together have little effect on the internal structure of the macrocycles. $O-H\cdots O$ and $C-H\cdots Br$ hydrogen bonds stabilize the crystal structure (see Table 2 and Fig. 2).

Experimental

Benzo-15-crown-5 (0.268 g, 1 mmol) in 10 ml of mixed acetonitrilemethanol (3:1 v/v) was added to europium nitrate (0.445 g, 1 mmol) in 10 ml mixed MeCN-methanol (3:1 v/v) solution. HBr (1 ml, 12.5 M, 12.5 mmol) was slowly added to the mixture. The resulting solution was left to evaporate at room temperature. Orange crystals suitable for X-ray investigation were obtained after three weeks (yield 1.55 g, 70%; melting point; 444.4-445.3 K. Microelemental analysis data: Found (calculated) C 30.26 (29.03), H 3.51 (3.62) and O 15.84% (16.5%).

Crystal data

	O2-C2
Z = 2	O2-C3
$D_x = 1.882 \text{ Mg m}^{-3}$	O3-C4
Mo $K\alpha$ radiation	O3-C5
Cell parameters from 957	O4-C7
reflections	
$\theta = 1.6-25.0^{\circ}$	$05 - C_9 - C_{14} - 0_1$
$\mu = 7.21 \text{ mm}^{-1}$	C_{9}^{-} C_{7}^{-} C_{8}^{-} C_{7}^{-}
T = 273 (2) K	04 - C7 - C8 - 05
Block, brown	C6 - O4 - C7 - C8
$0.50 \times 0.27 \times 0.13 \text{ mm}$	C7-O4-C6-C5
	O3-C5-C6-O4
	C4-O3-C5-C6
	C5-O3-C4-C3
6883 independent reflections	O2-C3-C4-O3
4087 reflections with $I > 2\sigma(I)$	C2-O2-C3-C4
$R_{\rm int} = 0.040$	C3-O2-C2-C1
$\theta_{\rm max} = 25.0^{\circ}$	O1-C1-C2-O2
$h = -14 \rightarrow 14$	C14-O1-C1-C2
$k = -16 \rightarrow 16$	C8-O5-C9-C14
$l = -16 \rightarrow 16$	
	Z = 2 $D_x = 1.882 \text{ Mg m}^{-3}$ Mo K\$\alpha\$ radiation Cell parameters from 957 reflections $\theta = 1.6-25.0^{\circ}$ $\mu = 7.21 \text{ mm}^{-1}$ T = 273 (2) K Block, brown $0.50 \times 0.27 \times 0.13 \text{ mm}$ 6883 independent reflections 4087 reflections with $I > 2\sigma(I)$ $R_{int} = 0.040$ $\theta_{max} = 25.0^{\circ}$ $h = -14 \rightarrow 14$ $k = -16 \rightarrow 16$ $l = -16 \rightarrow 16$

Packing of (I), viewed down the a axis. Dashed lines indicate hydrogen bonds.

Refinement

Refinement on F^2
$$\begin{split} R[F^2 > 2\sigma(F^2)] &= 0.053 \\ wR(F^2) &= 0.133 \end{split}$$
S = 1.026883 reflections 424 parameters H atoms treated by a mixture of independent and constrained refinement

 $w = 1/[\sigma^2(F_o^2) + (0.0436P)^2]$ + 5.5902P] where $P = (F_0^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\rm max} < 0.001$ $\Delta \rho_{\rm max} = 0.92 \text{ e} \text{ Å}^{-3}$ $\Delta \rho_{\rm min} = -0.85 \text{ e } \text{\AA}^{-3}$

Table 1

Selected geometric parameters (Å, °).

Br1-C11	1.908 (6)	O4-C6	1.430 (8)
Br2-C12	1.898 (7)	O5-C9	1.357 (7)
Br3-C25	1.900 (7)	O5-C8	1.436 (7)
Br4-C26	1.899 (7)	O6-C28	1.359 (7)
Br5-Br6	2.516 (2)	O6-C15	1.429 (7)
Br6-Br7	2.558 (2)	O7-C17	1.422 (8)
O1-C14	1.375 (7)	O7-C16	1.430 (7)
O1-C1	1.435 (7)	O8-C18	1.409 (9)
O2-C2	1.425 (7)	O8-C19	1.415 (8)
O2-C3	1.430 (7)	O9-C21	1.420 (8)
O3-C4	1.411 (8)	O9-C20	1.431 (8)
O3-C5	1.431 (8)	O10-C23	1.353 (7)
O4-C7	1.417 (8)	O10-C22	1.429 (7)
O5-C9-C14-O1	0.4 (8)	C23-O10-C22-C21	-177.3 (5)
C9-O5-C8-C7	177.8 (6)	O9-C21-C22-O10	63.6 (7)
O4-C7-C8-O5	-65.1(8)	C20-O9-C21-C22	-163.7(6)
C6-O4-C7-C8	163.4 (6)	C21-O9-C20-C19	83.2 (8)
C7-O4-C6-C5	-82.7(8)	O8-C19-C20-O9	66.6 (8)
O3-C5-C6-O4	-64.9(8)	C18-O8-C19-C20	-179.0(6)
C4-O3-C5-C6	172.4 (6)	C19-O8-C18-C17	178.4 (6)
C5-O3-C4-C3	-177.8(5)	O7-C17-C18-O8	-63.5(9)
O2-C3-C4-O3	71.2 (7)	C16-O7-C17-C18	-80.2(8)
C2-O2-C3-C4	84.8 (7)	C17-O7-C16-C15	162.0 (6)
C3-O2-C2-C1	-161.4(5)	O6-C15-C16-O7	-65.6 (7)
O1-C1-C2-O2	62.5 (6)	C28-O6-C15-C16	-178.7(5)
C14-O1-C1-C2	-176.5(5)	C15-O6-C28-C23	-175.7 (5)
C8-O5-C9-C14	-172.5 (5)	C22-O10-C23-C28	170.4 (5)

- -

Table 2	
Hydrogen-bond geometry (Å, °).	

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
O1W−H1W1···O1	0.85 (8)	2.40 (8)	3.128 (8)	143 (7)
$O1W - H1W1 \cdots O2$	0.85 (8)	2.18 (8)	2.882 (8)	140 (7)
$O1W - H1W2 \cdots O7$	0.86 (6)	2.16 (5)	2.959 (8)	156 (6)
$O1W - H1W2 \cdots O8$	0.86 (6)	2.34 (9)	2.859 (9)	119 (5)
$O1W - H1W3 \cdots O4$	0.86 (8)	2.06 (8)	2.910 (9)	168 (7)
$C22-H22A\cdots Br5^{i}$	0.97	2.86	3.676 (7)	142

Symmetry code: (i) -x + 1, -y + 1, -z + 1.

After their location in a difference map, all C-bound H atoms were positioned geometrically with C–H = 0.93–0.97 Å and constrained to ride on their parent atoms, with $U_{\rm iso}({\rm H}) = 1.2 U_{\rm eq}({\rm C})$. The H atoms of the water molecule were located in a difference Fourier map and refined isotropically, with $U_{\rm iso}({\rm H}) = 1.2 U_{\rm eq}({\rm O})$ using restraints of O–H = 0.85 (5) and 0.86 (6) Å for the O–H distances.

Data collection: *SMART* (Bruker, 2000); cell refinement: *SAINT* (Bruker, 2000); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997*a*); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997*a*); molecular graphics: *SHELXTL* (Sheldrick, 1997*b*); software used to prepare material for

publication: *SHELXTL*, *PARST* (Nardelli, 1995) and *PLATON* (Spek, 2003).

The authors thank the Malaysian Government and both Universiti Sains Malaysia and Universiti Kebangsaan Malaysia for the research grants IRPA No. 305/PKIMIA/ 612906, FRGS No. 304/PKIMIA/670006 and IRPA 09–02-02–0163 respectively.

References

Bruker (2000). SADABS (Version 2.01), SMART (Version 5.603) and SAINT (Version 6.36a). Bruker AXS Inc., Madison, Wisconsin, USA.

Calleja, M., Johnson, K., Belcher, W. J. & Steed, J. W. (2001). Inorg. Chem. 40, 4978–4905.

- Hao, X., Parkin, S. & Brock, C. P. (2005). Acta Cryst. B61, 675-688.
- Hassaballa, H., Steed, J. W. & Junk, P. C. (1998). Chem. Commun. 577-578.

Hanson, I. R. (1978). Acta Cryst. B34, 1026–1028.

Nardelli, M. (1995). J. Appl. Cryst. 28, 659.

Rogers, R. D., Rollins, A. N., Henry, R. F., Murdoch, J. S., Etzenhouser, R. D., Huggins, S. E. & Nunez, L. (1991). *Inorg. Chem.* **30**, 4946–4954.

Sheldrick, G. M. (1997*a*). SHELXS97 and SHELXL97, University of Göttingen, Germany.

Sheldrick, G. M. (1997b). SHELXTL. Version 5.1. Bruker AXS, Inc., Madison, Wisconsin, USA.

Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.