Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

M. Idiris Saleh, ${ }^{\text {a }}$ Eny Kusrini, ${ }^{\text {a }}$
Nurziana Ngah ${ }^{\text {b }}$ and
Bohari M. Yamin ${ }^{\text {b }}$

${ }^{\text {a }}$ School of Chemical Sciences, Universiti Sains Malaysia, Minden 11800, Penang, Malaysia, and ${ }^{\mathbf{b}}$ School of Chemical Sciences and Food Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia

Correspondence e-mail:
bohari@pkrisc.cc.ukm.my

Key indicators

Single-crystal X-ray study
$T=273 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.011 \AA$
R factor $=0.053$
$w R$ factor $=0.133$
Data-to-parameter ratio $=16.2$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
Bis(2,3-dibromo-6,7,9,10,12,13,15,16-octahydro-5,8,11,14,17-pentaoxabenzocyclopentadecene) hydroxonium tribromide

In the title compound, $2 \mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{5} \mathrm{Br}_{2} \cdot \mathrm{OH}_{3}{ }^{+} \cdot \mathrm{Br}_{3}{ }^{-}$, the two 15-crown- 5 macrocylic rings are linked by an oxonium cation via $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, forming a positively charged unsymmetrical sandwich-like compound with a tribromide counter-anion. The conformations of the two crown-5 fragments have gauche $\mathrm{C}-\mathrm{C}$ and anti $\mathrm{C}-\mathrm{O}$ linkages.

Comment

The reaction of benzo-15-crown-5 with some lanthanide metals normally leads to the formation of a complex via metal-oxygen chelation, e.g. trichloro(15-crown-5)neodymium (Rogers et al., 1991) and salt-type compounds such as $\left[M\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\left(15\right.\right.$-crown-5)] $\left(\mathrm{NO}_{3}\right)_{2}$ (Hao et al., 2005). However, a variety of different products without metal coordination by the crown ether have also been observed, for example (15-crown-5)triaquadichlorodioxouranium (Hassaballa et al., 1998). Similarly, in our study, no complexation product was obtained from a solution mixture containing benzo-15-crown5, hydrogen bromide and europium nitrate but, instead, bromination of the benzene ring and the formation of a tribromide anion occurred, resulting in the title compound, (I).

(I)

In contrast to 4-nitrobenzo-15-crown-5 tetrachloroaurate(III) oxonium monohydrate clathrate (Calleja et al., 2001), compound (I) has two dibromobenzo-15-crown-5 molecules linked by hydrogen bonds between the annular O atoms, $\mathrm{O}^{\prime}, \mathrm{O} 2, \mathrm{O} 4^{\prime}, \mathrm{O} 7$ and O 8 and the H atoms of the oxonium cation (Fig. 1, Table 2). As in the unsubstituted benzo-15-crown-5 (Hanson, 1978), the crown ether molecules maintain their approximate plane of symmetry through O3 and the mid-point of the $\mathrm{C} 9-\mathrm{C} 14$ bond for the first macrocycle and through O8 and the mid-point of the C23-C28 bond for the second ring. The torsion angles (Table 1) also indicate a similar conformation, individual $\mathrm{O}-\mathrm{C}-\mathrm{C}-\mathrm{O}$ segments being $a g^{-} a, g^{-} g^{-} a, a \mathrm{~g}^{+} g^{+}$and $a \mathrm{~g}^{+} a$ in the two crown ether units. The bond lengths and angles are also close to those in benzo-15-crown-5 [average $\mathrm{C}-\mathrm{C}, 1.485$; $\mathrm{C}-\mathrm{O}, 1.360$ (5)-

Received 16 March 2006
Accepted 26 March 2006

Figure 1
Structure of the title compound, (I), with 30% probability displacement ellipsoids. H atoms of the 15 -crown- 5 have been omitted for clarity. Dashed lines indicate hydrogen bonds.
1.431 (5) \AA], indicating that the hydrogen bonds that link the two molecules together have little effect on the internal structure of the macrocycles. $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{Br}$ hydrogen bonds stabilize the crystal structure (see Table 2 and Fig. 2).

Experimental

Benzo- 15 -crown-5 ($0.268 \mathrm{~g}, 1 \mathrm{mmol}$) in 10 ml of mixed acetonitrilemethanol ($3: 1 \mathrm{v} / \mathrm{v}$) was added to europium nitrate $(0.445 \mathrm{~g}, 1 \mathrm{mmol})$ in 10 ml mixed MeCN -methanol ($3: 1 \mathrm{v} / \mathrm{v}$) solution. $\mathrm{HBr}(1 \mathrm{ml}$, $12.5 \mathrm{M}, 12.5 \mathrm{mmol}$) was slowly added to the mixture. The resulting solution was left to evaporate at room temperature. Orange crystals suitable for X-ray investigation were obtained after three weeks (yield $1.55 \mathrm{~g}, 70 \%$; melting point; $444.4-445.3 \mathrm{~K}$. Microelemental analysis data: Found (calculated) C 30.26 (29.03), H 3.51 (3.62) and O 15.84\% (16.5\%).

Crystal data

$2 \mathrm{C}_{14} \mathrm{H}_{18} \mathrm{Br}_{2} \mathrm{O}_{5} \cdot \mathrm{H}_{3} \mathrm{O}^{+} \cdot \mathrm{Br}_{3}{ }^{-}$	$Z=2$
$M_{r}=1110.96$	$D_{x}=1.882 \mathrm{Mg} \mathrm{m}$
Triclinic, $P \overline{1}$	Mo $K \alpha$ radiation
$a=12.568(3) \AA$	Cell parameters from 957
$b=13.590(3) \AA$	reflections
$c=13.829(3) \AA$	$\theta=1.6-25.0^{\circ}$
$\alpha=70.697(4)^{\circ}$	$\mu=7.21 \mathrm{~mm}^{-1}$
$\beta=66.718(4)^{\circ}$	$T=273(2) \mathrm{K}$
$\gamma=67.601(4)^{\circ}$	Block, brown
$V=1960.4(7) \AA^{3}$	$0.50 \times 0.27 \times 0.13 \mathrm{~mm}$
Data collection	
Bruker SMART APEX area-	6883 independent reflections
detector diffractometer	4087 reflections with $I>2 \sigma(I)$
ω scan	$R_{\text {int }}=0.040$
Absorption correction: multi-scan	$\theta_{\text {max }}=25.0^{\circ}$
$(S A D A B S ;$ Bruker, 2000)	$h=-14 \rightarrow 14$
$T_{\text {min }}=0.104, T_{\text {max }}=0.392$	$k=-16 \rightarrow 16$
18603 measured reflections	$l=-16 \rightarrow 16$

Figure 2
Packing of (I), viewed down the a axis. Dashed lines indicate hydrogen bonds.

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.053$
$w R\left(F^{2}\right)=0.133$
$S=1.02$
6883 reflections
424 parameters
H atoms treated by a mixture of independent and constrained refinement

$$
\begin{aligned}
& w=1 / {\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0436 P)^{2}\right.} \\
&+5.5902 P] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.92 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.85 \mathrm{e}^{-3}
\end{aligned}
$$

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

Br1-C11	1.908 (6)	O4-C6	1.430 (8)
Br2-C12	1.898 (7)	O5-C9	1.357 (7)
Br3-C25	1.900 (7)	O5-C8	1.436 (7)
Br4-C26	1.899 (7)	O6-C28	1.359 (7)
Br5-Br6	2.516 (2)	O6-C15	1.429 (7)
Br6-Br7	2.558 (2)	O7-C17	1.422 (8)
O1-C14	1.375 (7)	O7-C16	1.430 (7)
O1-C1	1.435 (7)	O8-C18	1.409 (9)
O2-C2	1.425 (7)	O8-C19	1.415 (8)
O2-C3	1.430 (7)	O9-C21	1.420 (8)
O3-C4	1.411 (8)	O9-C20	1.431 (8)
O3-C5	1.431 (8)	O10-C23	1.353 (7)
O4-C7	1.417 (8)	O10-C22	1.429 (7)
O5-C9-C14-O1	0.4 (8)	$\mathrm{C} 23-\mathrm{O} 10-\mathrm{C} 22-\mathrm{C} 21$	-177.3 (5)
C9-O5-C8-C7	177.8 (6)	$\mathrm{O} 9-\mathrm{C} 21-\mathrm{C} 22-\mathrm{O} 10$	63.6 (7)
$\mathrm{O} 4-\mathrm{C} 7-\mathrm{C} 8-\mathrm{O} 5$	-65.1 (8)	$\mathrm{C} 20-\mathrm{O} 9-\mathrm{C} 21-\mathrm{C} 22$	-163.7 (6)
C6-O4-C7-C8	163.4 (6)	C21-O9-C20-C19	83.2 (8)
C7-O4-C6-C5	-82.7 (8)	O8-C19-C20-O9	66.6 (8)
O3-C5-C6-O4	-64.9 (8)	C18-O8-C19-C20	-179.0 (6)
C4-O3-C5-C6	172.4 (6)	C19-O8-C18-C17	178.4 (6)
C5-O3-C4-C3	-177.8 (5)	O7-C17-C18-O8	-63.5 (9)
$\mathrm{O} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{O} 3$	71.2 (7)	C16-O7-C17-C18	-80.2 (8)
$\mathrm{C} 2-\mathrm{O} 2-\mathrm{C} 3-\mathrm{C} 4$	84.8 (7)	C17-O7-C16-C15	162.0 (6)
$\mathrm{C} 3-\mathrm{O} 2-\mathrm{C} 2-\mathrm{C} 1$	-161.4 (5)	O6-C15-C16-O7	-65.6 (7)
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{O} 2$	62.5 (6)	C28-O6-C15-C16	-178.7 (5)
$\mathrm{C} 14-\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2$	-176.5 (5)	C15-O6-C28-C23	-175.7 (5)
C8-O5-C9-C14	-172.5 (5)	$\mathrm{C} 22-\mathrm{O} 10-\mathrm{C} 23-\mathrm{C} 28$	170.4 (5)

Table 2
Hydrogen-bond geometry ($\mathrm{A},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O1 $W-\mathrm{H} 1 W 1 \cdots$ O1	$0.85(8)$	$2.40(8)$	$3.128(8)$	$143(7)$
O1 $W-\mathrm{H} 1 W 1 \cdots$ O2	$0.85(8)$	$2.18(8)$	$2.882(8)$	$140(7)$
O1 $W-\mathrm{H} 1 W 2 \cdots$ O7	$0.86(6)$	$2.16(5)$	$2.959(8)$	$156(6)$
O1 $W-\mathrm{H} 1 W 2 \cdots$ O8	$0.86(6)$	$2.34(9)$	$2.859(9)$	$119(5)$
O1 $W-\mathrm{H} 1 W 3 \cdots$ O4	$0.86(8)$	$2.06(8)$	$2.910(9)$	$168(7)$
C22-H22 $^{\mathrm{C}} \cdots \mathrm{Br}^{\mathrm{i}}$	0.97	2.86	$3.676(7)$	142

Symmetry code: (i) $-x+1,-y+1,-z+1$.
After their location in a difference map, all C-bound H atoms were positioned geometrically with $\mathrm{C}-\mathrm{H}=0.93-0.97 \AA$ and constrained to ride on their parent atoms, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$. The H atoms of the water molecule were located in a difference Fourier map and refined isotropically, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{O})$ using restraints of $\mathrm{O}-$ $\mathrm{H}=0.85$ (5) and 0.86 (6) \AA for the $\mathrm{O}-\mathrm{H}$ distances.

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for
publication: SHELXTL, PARST (Nardelli, 1995) and PLATON (Spek, 2003).

The authors thank the Malaysian Government and both Universiti Sains Malaysia and Universiti Kebangsaan Malaysia for the research grants IRPA No. 305/PKIMIA/ 612906, FRGS No. 304/PKIMIA/670006 and IRPA 09-02-020163 respectively.

References

Bruker (2000). SADABS (Version 2.01), SMART (Version 5.603) and SAINT (Version 6.36a). Bruker AXS Inc., Madison, Wisconsin, USA.
Calleja, M., Johnson, K., Belcher, W. J. \& Steed, J. W. (2001). Inorg. Chem. 40, 4978-4905.
Hao, X., Parkin, S. \& Brock, C. P. (2005). Acta Cryst. B61, 675-688.
Hassaballa, H., Steed, J. W. \& Junk, P. C. (1998). Chem. Commun. 577-578.
Hanson, I. R. (1978). Acta Cryst. B34, 1026-1028.
Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
Rogers, R. D., Rollins, A. N., Henry, R. F., Murdoch, J. S., Etzenhouser, R. D., Huggins, S. E. \& Nunez, L. (1991). Inorg. Chem. 30, 4946-4954.
Sheldrick, G. M. (1997a). SHELXS97 and SHELXL97, University of Göttingen, Germany.
Sheldrick, G. M. (1997b). SHELXTL. Version 5.1. Bruker AXS, Inc., Madison, Wisconsin, USA.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

